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In vehicle±bridge interaction problems, the contact force between the moving
vehicle and the bridge depends on the velocity and acceleration of the moving
vehicle, the ¯exibility of the bridge as well as the roughness of the upper
surface of the bridge. In some cases, the contact force may become zero, which
implies that the moving vehicle separates from the bridge. Neglecting this
separation phenomenon will lead to a tensile contact force, which will a�ect the
results. This paper investigates the onset and e�ects of separation between the
moving vehicle and bridge. An algorithm to account for the impact on the re-
establishment of contact is proposed. Numerical results also show that the
e�ects are not negligible.
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1. INTRODUCTION

The dynamic response of bridge structures subjected to moving vehicle loads has
long been an interesting topic in the ®eld of civil engineering. In particular, the
interaction problem between vehicles and bridge structures has attracted much
attention during the last two decades due to the large increase in the proportion
of heavy vehicles and high-speed vehicles in highway and railway traf®c. Fryba
[1] has presented various analytical solutions for vibration problems of simply
supported beams under moving vehicles. A number of semi-analytical methods
have also been proposed for multi-span beam bridges using moving force models
[2±5] or moving vehicle models [6]. However, in most of these studies, it has
been implicitly assumed that the moving vehicle travelling on the bridge is
always in contact with it, no matter what is the sign of the contact force. This is
obviously not always true in view of the physics of the moving vehicle which
simply sits on and slides along the upper surface of the bridge.
Figure 1 shows a vehicle modelled as a system of two degrees of freedom

(DOFs), in which M1 and M2 are the unsprung mass and sprung mass of the
moving vehicle, respectively. The vertical displacements of the unsprung mass
M1 and sprung mass M2 with reference to their respective vertical equilibrium
positions are y1(t) and y2(t), respectively. The horizontal position of the moving
vehicle measured from a ®xed point, such as the left end of the bridge, is x(t).
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The horizontal velocity and acceleration of the moving vehicle are v and a
respectively. The vertical interaction force pc(t) acting on the moving vehicle can
therefore be written as [6]:

pc�t� � �M1 �M2�g�M1
d2y1�t�
dt2

�M2
d2y2�t�
dt2

, �1�

in which g is the acceleration due to gravity. If there is no loss of contact
between the unsprung mass and the upper surface of the bridge, the vertical
displacement, velocity and acceleration of the unsprung mass can be taken
respectively as

y1�t� � �w�x, t� � r�x��jx�x�t� �2�

_y1�t� � dy1�t�
dt
� @w

@t
� v

@w

@x
� v

dr

dx

� �����
x�x�t�

�3�

�y1�t� � d2y1�t�
dt2

� @2w

@t2
� 2v

@2w

@x@t
� v2

@2w

@x2
� a

@w

@x
� v2

d2r

dx2
� a

dr

dx

� �����
x�x�t�

, �4�

where w(x, t) is the upward de¯ection of the bridge and r(x) is the surface
roughness of the bridge which is de®ned as the vertically upward departure from
the mean horizontal pro®le.
From equations (1) to (4), it can be seen that the interaction force between the

moving vehicle and the bridge depends on the velocity and acceleration of the
vehicle, the ¯exibility of the bridge and the roughness of the upper surface of the
bridge. The interaction force does vary with time and it can be taken as an
indicator of separation. When it becomes zero, it denotes the onset of
separation, and it should remain zero until the moving vehicle re-establishes
contact with the bridge.
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Figure 1. A vehicle modelled as a two-degree-of-freedom system.
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Lee [7] has discussed the onset of separation between a moving mass and a
beam. This paper further investigates the onset of separation and re-
establishment of contact between the moving vehicle and the bridge. To
minimize the error due to discretization, the dynamic stiffness method [8±10] is
®rst utilized to obtain the ``exact'' frequencies and mode shapes of the bridge.
Then the modal superposition method is coupled with the direct integration
method to analyze the dynamic response of the bridge.

2. THEORY AND FORMULATION

A continuous linear elastic Bernoulli±Euler beam bridge with (ns� 1) point
supports subjected to N moving vehicles is shown in Figure 2. The vehicles are
modelled as moving systems each of 2 DOFs {Ms1, Ms2 , cs , ks , s� 1, 2, . . . , N},
and they move as a group at a prescribed velocity v(t) along the axial direction
from left to right. Here Ms1 and Ms2 are the unsprung mass and sprung mass of
the sth vehicle, respectively. The two masses are interconnected by a spring of
stiffness ks and a dashpot of damping coef®cient cs . The horizontal position of
the sth vehicle measured from the left end of the bridge is xs(t), a function of
time t. The de¯ection of the bridge is denoted by w(x, t) where upward de¯ection
is taken as positive. The vertical displacements of the masses Ms1 and Ms2 are
ys1(t) and ys2(t), respectively, and they are measured vertically upward with
reference to their respective vertical static equilibrium positions before they came
onto the bridge.

2.1. DETERMINATION OF THE FREQUENCIES AND MODE SHAPES [8±10]

The governing equation for undamped ¯exural vibration w(x, t) of a uniform
beam is

EI
@4w�x, t�
@x4

� rA
@2w�x, t�

@t2
� 0 �5�

where EI is the ¯exural stiffness, A is the cross-sectional area and r is the mass
density. In particular, harmonic ¯exural vibration can be written as
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Figure 2. A continuous beam with (ns� 1) point supports under N moving vehicles.
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w�x, t� �W�x�eiot �6�
in terms of the mode shape W(x) and the angular frequency o. Using the
method of separation of variables, one obtains

EI
d4W�x�
dx4

� rAo2W�x�: �7�

A multi-span continuous beam can be considered as an assemblage of a
number of spans. The solution associated with the nodal displacements at the
ends of a span

Wjx�0 � u1,
dW

dx

����
x�0
� u2, Wjx�l � u3 and

dW

dx

����
x�l
� u4 �8�

is therefore

W�x� � �N�x, o���u1u2u3u4�T � N�x, o�ue, �9�
where the shape functions are

N�x, o� �
cos lx
sin lx
cosh lx
sinh lx

8>><>>:
9>>=>>;

T
1=2ÿ F4=2l

2 F2l=2l
2 ÿF3=2l

2 F1l=2l
2

ÿF6=2l
3 l=2l� F4l=2l

3 ÿF5=2l
3 ÿF3l=2l

3

1=2� F4=2l
2 ÿF2l=2l

2 F3=2l
2 ÿF1l=2l

2

F6=2l
3 l=2lÿ F4l=2l

3 F5=2l
3 F3l=2l

3

2664
3775,
�10�

in which l4�o2rAl 4/EI, x� x/l, x is the local co-ordinate measured from the
left end of the span and l is the length of the span. The frequency functions Fi

are de®ned as

F1 � ÿl�sinh lÿ sin l�=d, �11�

F2 � ÿl�cosh l sin lÿ sinh l cos l�=d, �12�

F3 � ÿl2�cosh lÿ cos l�=d, �13�

F4 � l2�sinh l sin l�=d, �14�

F5 � l3�sinh l� sin l�=d, �15�

F6 � ÿl3�cosh l sin l� sinh l cos l�=d, �16�

d � cosh l cos lÿ 1: �17�
Elements of the nodal force vector Qe at the ends of the span are
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Q1 � EI
d3W

dx3

����
x�0

, Q2 � ÿEI d2W

dx2

����
x�0

, Q3 � ÿEI d3W

dx3

����
x�l

and

Q4 � EI
d2W

dx2

����
x�l
:

�18�

The nodal force vector Qe and the nodal displacement vector ue at the ends of
the span are related by the beam element dynamic stiffness d(o2) as

Qe � d�o2�ue: �19�

By carrying out appropriate differentiation of the shape functions de®ned by
equation (10), the beam element dynamic stiffness d(o2) can be obtained as

d�o2� � EI

l3

F6 ÿF4l F5 F3l
ÿF4l F2l

2 ÿF3l F1l
2

F5 ÿF3l F6 F4l
F3l F1l

2 F4l F2l
2

2664
3775: �20�

The global dynamic stiffness matrix for the multi-span beam bridge shown in
Figure 2 can therefore be assembled. After elimination of certain rows and
columns to account for the boundary conditions, the governing equation for free
vibration can be written as an eigenvalue problem

D�o2�U � 0, �21�

where D(o2) is the global dynamic stiffness matrix and U is the global
displacement vector de®ning the mode shapes. Non-trivial solutions to equation
(21) can be determined by the following equation

det�D�o2�� � 0: �22�

Corresponding to each frequency oi , the mode shape fir(xr) of the rth span is
given by

fir�xr� � N�xr, oi�uer, �23�

where xr is the local co-ordinate of the rth span and uer is the displacement
vector of the rth span for the ith mode shape.
If the global co-ordinate x is measured from the left end of the multi-span

bridge, i.e.,

x � xr �
Xrÿ1
j�1

lj, �24�

where lj is the length of jth span, the ith mode shape in terms of the global co-



786 Y. S. CHENG ET AL.

ordinate x can be written as

Fi�x� � fir�xr� for
Xrÿ1
j�1

ljExE
Xr
j�1

lj, r � 1, 2, . . . , ns: �25�

2.2. EQUATIONS OF MOTION IN MODAL CO-ORDINATES

After obtaining the natural frequencies and mode shapes by the dynamic
stiffness method, the transverse de¯ection w(x, t) of the bridge as shown in
Figure 2 can be expressed as

w�x, t� �
Xn
i�1

qi�t�Fi�x�, �26�

where (qi(t), i� 1, 2, . . . , n) are generalized co-ordinates to be determined, and
(Fi(x), i� 1, 2, . . . , n) are vibration mode shapes of the bridge considered.
Using the Lagrangian equation of the bridge and the constraint conditions at

the contact points between the moving vehicles and the bridge (i.e., equations
(2±4)), the equations of motion for the bridge can be written as follows [6].

Xn
j�1

m�ij�qj�t� �
Xn
j�1

c�ij _qj�t� �
Xn
j�1

k�ijqj�t� �
XN
s�1

Ms2Fi�xs�t���ys2�t� � p�i �t�,

i � 1, 2, . . . , n, �27�

where

m�ij�t� � mij �
XN
s�1

Ms1Fi�xs�t��Fj�xs�t��, �28�

mij �
�L
0

rA�x�Fi�x�Fj�x�dx, �29�

c�ij�t� �
XN
s�1

2vMs1Fi�xs�t��F0j�xs�t��, �30�

k�ij�t� � kij �
XN
s�1

Ms1Fi�xs�t���v2F00j �xs�t�� � aF0j�xs�t���, �31�

kij �
�L
0

EI�x�F00i �x�F00j �x� dx, �32�
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p�i �t� � ÿ
XN
s�1
��Ms1 �Ms2�gFi�xs�t�� �Ms1Fi�xs�t���v2r00�xs�t�� � ar0�xs�t����:

�33�
In the above equations, the dot stands for differentiation with respect to time
and the prime denotes differentiation with respect to x. Note that equation (27)
is only valid under the condition that all N vehicles are acting on the bridge.
Should a particular vehicle be outside the bridge, the corresponding terms under
the summation signs should be omitted.
The equation of motion of the typical sprung mass Ms2 is

Ms2 �ys2�t� � cs� _ys2�t� ÿ _ys1�t�� � ks� ys2�t� ÿ ys1�t�� � 0: �34�
Substituting equations (2±4) and (26) into equation (34), the equation of motion
of the typical sprung mass Ms2 becomes

ÿ
Xn
j�1

csFj�xs�t�� _qj�t� ÿ
Xn
j�1
�ksFj�xs�t�� � vcsF0j�xs�t���qj�t�

�Ms2 �ys2�t� � cs _ys2�t� � ks ys2�t� � ksr�xs�t�� � vcsr
0�xs�t��;

s � 1, 2, . . . , N: �35�
Again the above equation is only valid when the sth vehicle acts on the bridge.
Equations (27) and (35) can be written together in matrix form as

M� FM2

0 M2

� �
�q

�y2

� �
� C� 0

ÿCFFFT C

� �
_q

_y2

� �
� K� 0

ÿKFFFT ÿ vCFFF 0T K

� �
q

y2

� �

� p�

Kr� vCr0

� �
, �36�

where the sub-matrices are given below in terms of the typical element at the ith
row and the jth column, and the sub-vectors are given in terms of the typical ith
element

M� � �m�ij�t��, C� � �c�ij�t��, K� � �k�ij�t��, i, j � 1, 2, . . . , n, �37±39�

M2 � diag�Mi2�, C � diag�ci�, K � diag�ki�, i � 1, 2, . . . , N, �40±42�

F � �Fi�xj�t���, i � 1, 2, . . . , n; j � 1, 2, . . . , N, �43�

p� � fp�i �t�g, q � fqi�t�g, i � 1, 2, . . . , n, �44, 45�

r � fr�xi�t��g, y2 � fyi2�t�g, i � 1, 2, . . . , N: �46, 47�
Equation (36) can then be solved by the Wilson-y method [11] or a similar
technique. Likewise, this equation has been written on the assumption that all N
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vehicles are acting on the bridge. Where a certain vehicle is not on the bridge,
the corresponding rows and columns of the matrix equation should be deleted.

2.3. SEPARATION AND RE-ESTABLISHMENT OF CONTACT BETWEEN VEHICLE AND

BRIDGE

As mentioned above, the vertical interaction force acting on the moving
vehicle pc(t) can be monitored to ®nd out when separation occurs. If the sth
vehicle separates from the bridge during the time interval t1E tE t2 , then the
vehicle undergoes unconstrained motion under gravity and the equations of
motion of the entire vehicle±bridge system need to be modi®ed. In particular,
the motion of the unsprung mass of that vehicle no longer follows the upper
surface of the bridge and hence the displacement of the unsprung mass y1(t)
should be separately solved.
Consider the special case in which only one vehicle acts on the bridge. During

the brief time interval (t1E tE t2) of separation, the bridge is under free
vibration with initial conditions at t� t1. In other words, the equation of motion
of the bridge can be written as

Mb�q� Kbq � 0, �48�
with the initial conditions speci®ed as

q � fqi�t1�g, _q � f _qi�t1�g, i � 1, 2, . . . , n �49�
where the mass matrix Mb and the stiffness matrix Kb of the bridge are
respectively

Mb � �mij�, Kb � �kij�, i, j � 1, 2, . . . , n: �50�
The equation of motion of the vehicle which separates from the bridge can be
written as

M1 0
0 M2

� �
�y1�t�
�y2�t�

� �
� c ÿc
ÿc c

� �
_y1�t�
_y2�t�

� �
� k ÿk
ÿk k

� �
y1�t�
y2�t�

� �
� ÿM1g
ÿM2g

� �
,

�51�
with the initial displacements and velocities of the unsprung and sprung masses
speci®ed at the time t� t1 when the vehicle ®rst separates from the bridge. In
particular, the initial displacement and velocity of the unsprung mass are

y1�t1� � �w�x, t� � r�x��
���x�x1�t1�

t�t1
, �52�

_y1�t1� � @w�x, t�
@t

� v
@w�x, t�
@x

� v
dr�x�
dx

� �����x�x1�t1�
t�t1

, �53�

where x1(t) is the position of the vehicle. Note that equation (2) will not be true
during the time interval of separation. Contact between the vehicle and the
bridge is re-established at t� t2 when the displacement of the unsprung mass
y1(t2) obtained from equation (51) becomes equal to the bridge de¯ection
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w(x1(t2), t2)� r(x1(t2)) again. Numerically, this condition can be detected from
the following inequalities where applicable

jy1�t� ÿ �w�x, t� � r�x��j
min�jy1�t�j, jw�x, t� � r�x�j�

����x�x1�t2�
t�t2

EB1, �54�

1ÿ B2E
y1�t�

w�x, t� � r�x�
����x�x1�t2�

t�t2

E1 for
y1�t2� > 0

w�x1�t2�, t2� � r�x1�t2�� > 0
, �55�

1ÿ B3E
jw�x, t� � r�x�j
jy1�t�j

����x�x1�t2�
t�t2

E1 for
y1�t2� < 0

w�x1�t2�, t2� � r�x1�t2�� < 0
, �56�

max �w�x, t� � r�x��
���x�x1�t2�

t�t2
, jy1�t�jt�t2

� �
EB4 for

y1�t2� < 0

w�x1�t2�, t2� � r�x1�t2�� > 0
,

�57�
in which Bi are small positive parameters which depend on the accuracy required.
Then using the displacements and velocities at t� t2 as initial conditions, the
equation of motion for the vehicle±bridge system shown in equation (36) can be
used again to solve for the subsequent dynamic response.

2.4. IMPACT ON RE-ESTABLISHMENT OF CONTACT BETWEEN VEHICLE AND BRIDGE

In the solution of equation (36) for the subsequent dynamic response after re-
establishment of contact between the vehicle and bridge, the initial displacements
and velocities are required. However, the velocities of the unsprung mass and the
bridge at the point of contact are normally different, and an impact is inevitable.
If impact is neglected, one may assume that the velocity distribution along the
bridge is hardly affected, and the distribution of displacements and velocities of
the bridge at t� t2 can be taken as initial conditions.
In this paper, it is assumed that the impact force Pim(t) of very short duration

can be approximated by

Pim�t� � pimp�t�, �58�
where p(t) is an assumed distribution of time history with maximum magnitude
of unity and pim is the maximum impact force to be determined. As the duration
of the impact Dt is very short, the change of horizontal position of the vehicle
during impact can be neglected. Under these simplifying assumptions, the impact
problem is equivalent to ®nding the maximum impact force pim and the duration
of impact Dt such that the displacements and velocities of the vehicle and bridge
at the end of the impact duration are compatible and that the interaction force is
continuous. It has also been implicitly assumed that violation of compatibility of
displacements and velocities within the very short impact duration is ignored.
For simplicity of argument, only one vehicle is assumed to act on the bridge.

Under the above assumptions, the equation of motion for the vehicle during the
impact time interval t2E tE t2�Dt can be written as
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M1 0
0 M2

� �
�y1
�y2

� �
� c ÿc
ÿc c

� �
_y1
_y2

� �
� k ÿk
ÿk k

� �
y1
y2

� �
� Pim�t�

0

� �
, �59�

with the initial displacements and velocities taken as those at time t� t2 , i.e.,
y1(t2), y2(t2), _y1(t2) and _y2(t2). Similarly the equation of motion for the bridge in
the same impact time interval becomes

Mb�q� Kbq � P, �60�
with the initial conditions speci®ed as

q � fqi�t2�g, _q � f _qi�t2�g, i � 1, 2, . . . , n, �61�
where the force vector due to the impact is

P � fÿPim�t�Fi�x1�t2��g, i � 1, 2, . . . , n: �62�
At the end of the brief impact time interval, the displacements and velocities of
the vehicle and bridge at the contact point should be compatible, and hence

y1�t2 � Dt� � �w�x, t� � r�x��
���x�x1�t2�
t�t2�Dt

, �63�

_y1�t2 � Dt� � @w�x, t�
@t

� v
@w�x, t�
@x

� v
dr�x�
dx

� �����x�x1�t2�
t�t2�Dt

: �64�

The continuity of the interaction force can be ensured by using an impact force
distribution function Pim(t) which is continuous with the subsequent interaction
force, and it can be approximately enforced by iterations. For example, the
assumed continuous impact force time history may be taken as

Pim�t� �

0 t � t2
p1�t� t2 < t < t2 � bDt
pim t � t2 � bDt
p2�t� t2 � bDt < t < t2 � Dt
pc0 t � t2 � Dt

,

8>>>><>>>>: �65�

where p1(t) and p2(t) are assumed functions, b is an assumed positive parameter
which is less than one, pim is the maximum impact force and pc0 is an assumed
interaction force at the end of the impact time interval, as shown in Figure 3.
The search for suitable control variables pim , pc0 and Dt is itself an

optimization problem with constraints. The problem is to minimize the objective
function F(pim , Dt)

F�pim, Dt� � _y1�t� ÿ @w�x, t�
@t

� v
@w�x, t�
@x

� v
dr�x�
dx

� ����� ����x�x1�t2�
t�t2�Dt

�66�

subject to the following constraints governing displacements where applicable:
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jy1�t� ÿ �w�x, t� � r�x��j
min�jy1�t�j, jw�x, t� � r�x�j�

����x�x1�t2�
t�t2�Dt

Ee1, �67�

1ÿ e2E
y1�t�

w�x, t� � r�x�
����x�x1�t2�
t�t2�Dt

E1 for
y1�t2 � Dt� > 0

w�x1�t2�, t2 � Dt� � r�x1�t2�� > 0
, �68�

1ÿ e3E
jw�x, t� � r�x�j
jy1�t�j

����x�x1�t2�
t�t2�Dt

E1 for
y1�t2 � Dt� < 0

w�x1�t2�, t2 � Dt� � r�x1�t2�� < 0
,

�69�

max �w�x, t� � r�x��
���x�x1�t2�
t�t2�Dt

, jy1�t�jt�t2�Dt
� �

Ee4

for
y1�t2 � Dt� < 0

w�x1�t2�, t2 � Dt� � r�x1�t2�� > 0
,

�70�

and the following constraints governing velocities and interaction force

_y1�t�� @w�x, t�
@t

� v
@w�x, t�
@x

� v
dr�x�
dx

� �� �����x�x1�t2�
t�t2�Dt

> 0, �71�

_y1�t� ÿ @w�x, t�
@t

� v
@w�x, t�
@x

� v
dr�x�
dx

� ����� ����
max j _y1�t�j, @w�x, t�

@t
� v

@w�x, t�
@x

� v
dr�x�
dx

���� ����� �
��������x�x1�t2�
t�t2�Dt

Ee5, �72�

Pc0

Pim

Assumed 
Pim(t)

t1 t2

t

t2+     t

P
c(t

)

t2+   t

Figure 3. Assumed time history of interaction force on separation and re-establishment of con-
tact between vehicle and bridge.
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pc0 ÿ pc
pc0

���� ���� < e6, �73�

in which ei are small positive parameters controlling the required computing
accuracy and the actual interaction force pc can be obtained from equation (1).
Note that the above constraints are introduced to account for various possible
conditions. After formulating the problem, any appropriate algorithm for non-
linear constrained optimization can be applied for its solution.
Notice that in the search for re-establishment of contact alone, only geometric

compatibility needs to be considered. However, to take into account the impact
as well, it is necessary to consider both the geometric compatibility and velocity
compatibility between the unsprung mass and the bridge.

3. NUMERICAL RESULTS

Figure 4 shows a single-span simply supported bridge which may have a
harmonically varying surface irregularity represented by

r�x� � �d=2��1ÿ cos�2px=�l��, �74�
where d and �̀ are the surface irregularity depth and length, respectively. A
vehicle, which is modelled as an unsprung mass m1 and a sprung mass m2

interconnected by a spring with stiffness k and a damper with damping
coef®cient c, is assumed to move with a constant speed v along the bridge. In
parallel with the notations used in reference [12], seven dimensionless parameters
are de®ned as follows: velocity ratio, a� vp/ob,1l, where ob;1 � p2

�����������������
EI=rAl4

p
;

unsprung to sprung mass ratio, k0�m1/m2 ; vehicle to bridge mass ratio,
k� (m1�m2)/rAl; bridge to vehicle frequency ratio, O�ob,1/ov , where
ov �

�����������
k=m2

p
; vehicle damping ratio, zv� c/2m2ov; surface irregularity depth

ratio, rd�ÿ48EId/(m1�m2)gl
3; and surface irregularity length ratio, rl� l/�l. The

velocity ratio a is de®ned in such a way that, when a equals unity, the vehicle
traversing time t� l/v equals half the fundamental period of the bridge.
For comparison with reference [12], the following speci®c parameters are

assumed: k� 0�5, k0� 0�25, O� 3 and xv� 0�125. Various cases of the velocity

y

xm1

m2

ck

xs(t)

l

Figure 4. A single-span simply supported bridge under a single-axle moving vehicle.
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ratios a and roughness are considered. The problem was solved by the present
method using eight vibration modes and 200 equal time steps. The parameter y
used in the Wilson-y method was taken to be 1�4. In the presentation of results,
the dynamic magni®cation factors for mid-span displacement Dd and mid-span
bending moment Dm are de®ned as: Dd� (maximum dynamic mid-span
displacement)/(static mid-span displacement); and Dm� (maximum dynamic
mid-span moment)/(static mid-span moment), where the static quantities equal
ÿ(m1�m2)gl

3/48EI and (m1�m2)gl/4, respectively, due to a concentrated load
(m1�m2)g placed at mid-span.
A perfectly smooth bridge (i.e., rd� rl� 0) was ®rst analyzed, and Figures 5

and 6 show the dynamic magni®cation factors Dd and Dm respectively for the
range of velocity ratio 0E aE 1�0. No separation between vehicle and bridge
was detected. Then the same bridge with roughness (rd� 0�05, rl� 10) was
studied, and the dynamic magni®cation factors Dd and Dm for the range of
velocity ratio 0E aE 0�5 are shown in Figures 7 and 8, respectively. Again no
separation between vehicle and bridge was detected within this range of velocity
ratio. In general, good agreement is observed between the present results and
those due to Olsson [12]. However, some discrepancies in the results for the
dynamic magni®cation factor Dm are noticed as the computed bending moment,
being proportional to the second derivative of the de¯ection with respect to co-
ordinate x, is very much dependent on the numerical method used. The dynamic
stiffness method adopted in the present approach is expected to be more
accurate provided that suf®cient vibration modes have been used.
In the case of the bridge with roughness, separation between vehicle and

bridge is expected for higher values of velocity ratio. In order to study the effects
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Figure 5. Simply supported bridge without roughness under a vehicle, dynamic magni®cation
factor Dd . Ð, Present; *, reference [12].
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of separation and impact on the bridge dynamics, the above bridge was re-

analyzed for the following assumptions: (a) separation between vehicle and

bridge is ignored; (b) separation between vehicle and bridge is considered but the

impact on re-establishment of contact is ignored; and (c) both separation and

impact on re-establishment of contact between vehicle and bridge are considered.
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Figure 6. Simply supported bridge without roughness under a vehicle, dynamic magni®cation
factor Dm . Key as for Figure 5.
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Figure 7. Simply supported bridge with roughness under a vehicle, dynamic magni®cation
factor Dd . Key as for Figure 5.
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When separation and subsequent re-establishment of contact between vehicle
and bridge are considered, the following parameters are used: B1� B2� B3� 0�05;
B4� 10±5m; e1� e2� e3� e5� e6� 0�05; and e4� 10±5m. The assumed impact
force time history Pim(t) is shown in Figure 9 and de®ned as follows:

pim�t� �

pim � �tÿ t2�
0�5Dt for t2EtEt2 � 0�5Dt,

pim ÿ �pim ÿ pc0�
0�5Dt � �tÿ t2 ÿ 0�5Dt� for t2 � 0�5DtEtEt2 � Dt:

�75�

8>>><>>>:
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Figure 8. Simply supported bridge with roughness under a vehicle, dynamic magni®cation
factor Dm . Key as for Figure 5.
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Figure 9. Assumed time history of impact force on re-establishment of contact between vehicle
and bridge used in numerical example.
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The method of constrained variable metric [13] was employed to solve the
constrained optimization problem described in the last section. A typical time
history of interaction force prior to and after separation is shown in Figure 10.
It shows the fairly concentrated impact force following re-establishment of
contact between the vehicle and bridge. The full time histories of interaction
forces obtained from various assumptions are shown in Figure 11. Note that the
impact forces on re-establishment of contact have not been plotted here as these
time histories are plotted along regular time intervals. It shows that if the
separation between the vehicle and bridge is ignored, tensile interaction forces
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Figure 10. Simply supported bridge with roughness under a vehicle, typical interaction force
prior to and after separation.
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Figure 11. Simply supported bridge with roughness under a vehicle, interaction force ratio cal-
culated from different schemes. ±±±±, (a) Separation ignored; ÐÐÐ, (b) separation considered
but impact ignored; ÐÐ, (c) both separation and impact considered.
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may result, which is physically impossible. One major effect of the impact on re-

establishment of contact between the vehicle and bridge is the change in velocity

distribution along the length of the bridge. Figure 12 shows the velocity

distributions immediately before and after the impact that occurs roughly at

mid-span position for the velocity ratio a� 0�64. It is observed that the velocity
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Figure 12. Velocity distribution of bridge immediately before and after re-establishment of con-
tact between the vehicle and bridge roughly at mid-span position for velocity ratio a� 0�64. ÐÐ,
Velocity after impact; ±±±±, velocity before impact.
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Figure 13. Simply supported bridge with roughness under a vehicle, dynamic magni®cation
factor Dd . Key as for Figure 11.
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distribution has been radically altered. As the velocity distribution serves as one
of the initial conditions for subsequent solution of the problem, it shows that the
effects of impact should be considered in order to obtain an accurate picture of
the bridge response.
The dynamic magni®cation factors Dd and Dm are computed for the range of

velocity ratio (0�5E aE 0�75) under various assumptions, and shown in Figures
13 and 14, respectively. The effect of impact on these dynamic magni®cation
factors is apparent. Separation between vehicle and bridge is observed for
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Figure 14. Simply supported bridge with roughness under a vehicle, dynamic magni®cation
factor Dm . Key as for Figure 11.
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Figure 15. Simply supported bridge with roughness under a vehicle, separation region obtained
with impact ignored.
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velocity ratios approximately above 0�59. Beyond this point, the curves in each
®gure tend to diverge. However, in the range of velocity ratio (0�69E aE 0�71),
the curves tend to converge again. This is because the vehicle separates from the
bridge only after creating the maximum de¯ection or bending moment.
The regions along the bridge in which the separation between the moving

vehicle and bridge occurs are shown in Figure 15 for the case when only
separation is considered and in Figure 16 for the case when both separation and
impact are considered. It is observed that separation between the moving vehicle
and bridge often occurs in the vicinity of the crests of roughness. Figures 15 and
16 show that no separation occurs below certain values of the velocity ratio.
However, as the velocity of the vehicle increases, separation occurs more often
and the separation region seems to widen and appear earlier.

4. CONCLUSION

This paper investigates the vehicle±bridge interaction problem taking into
account the effects of separation and impact on re-establishment of contact
between the moving vehicle and bridge. The use of the dynamic stiffness method
for evaluation of the natural frequencies and mode shapes of the bridge has
provided a sound basis for subsequent analysis using modal superposition. Time
history analysis of the vehicle±bridge system is then carried out with a direct
integration algorithm which can take into account the separation and impact on
re-establishment of contact between the moving vehicle and bridge. It is
observed that separation often occurs in the vicinity of the crests of roughness.
In the examples considered, it is observed that no separation occurs below
certain values of the velocity ratio. As the velocity of the vehicle increases,
separation occurs more often and the separation region seems to widen and
appear earlier. The velocity distribution of the bridge is also radically altered by
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Figure 16. Simply supported bridge with roughness under vehicle, separation region obtained
with impact considered.
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the impact force. To ensure an accurate estimation of the dynamic response of a
vehicle±bridge system, the effects of separation and impact should be taken into
account.

5. ACKNOWLEDGMENT

The ®nancial support of the Hong Kong Research Grants Council is
acknowledged.

REFERENCES

1. L. FRYBA 1972 Vibration of Solids and Structures Under Moving Loads. Groningen,
The Netherlands: Noordho� International Publishing.

2. T. HAYASHIKAWA and N. WATANABE 1981 Journal of Structural Mechanics Division,
American Society of Civil Engineers 107, 229±246. Dynamic behavior of continuous
beams with moving loads.

3. J. S. WU and C. W. DAI 1987 Journal of Structural Engineering 113, 458±474.
Dynamic responses of multi-span nonuniform beam due to moving loads.

4. K. HENCHI, M. FAFARD, G. DHATT and M. TALBOT 1997 Journal of Sound and
Vibration 199, 33±50. Dynamic behavior of multi-span beams under moving loads.

5. D. Y. ZHENG, Y. K. CHEUNG, F. T. K. AU and Y. S. CHENG 1998 Journal of
Sound and Vibration 212, 455±467. Vibration of multi-span non-uniform beams
under moving loads by using modi®ed beam vibration functions.

6. Y. K. CHEUNG, F. T. K. AU, D. Y. ZHENG and Y. S. CHENG (under review)
Vibration of multi-span non-uniform bridges under moving vehicles by using modi-
®ed beam vibration functions.

7. U. LEE 1996 Journal of Vibration and Acoustics 118, 517±521. Revisiting the mov-
ing mass problem: onset of separation between the mass and beam.

8. T. H. RICHARDS and Y. T. LEUNG 1977 Journal of Sound and Vibration 55, 363±
376. An accurate method in structural vibration analysis.

9. A. Y. T. LEUNG 1993 Dynamic Sti�ness and Substructures. London: Springer.
10. N. J. FERGUSSON 1991 Ph.D. thesis, University of Virginia. The free and forced

vibrations of structures using the ®nite dynamic element method.
11. K. J. BATHE and E. L. WILSON 1976 Numerical Methods in Finite Element Analysis.

Englewood Cli�s, NJ: Prentice-Hall.
12. M. OLSSON 1985 Journal of Sound and Vibration 99 1±12. Finite element, modal

co-ordinate analysis of structures subjected to moving loads.
13. J. YU and J. ZHOU 1989 Optimization Programmes OPB-1: Theory and Applications

(in Chinese). Beijing, PR China: Mechanical Industry Press.

APPENDIX: A: NOTATION

{cs , s� 1, 2, . . . , N} damping coef®cient of the sth vehicle
EI(x) ¯exural rigidity of the bridge
{ks , s� 1, 2, . . . , N} stiffness of the spring of the sth vehicle
{mij , kij , i, j� 1, 2, . . . , n} generalized mass and stiffness matrices of the

bridge only
{m�ij, c

�
ij, k

�
ij, i, j� 1, 2, . . . , n} generalized mass, damping and stiffness matrices

of the vehicle±bridge system
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{Ms1 , Ms2 , s� 1, 2, . . . , N} unsprung mass and sprung mass, respectively, of
the sth vehicle

ns ns is the number of spans
N number of vehicles in the convoy
pc(t) interaction force between the vehicle and the

bridge
{p�i (t), i� 1, 2, . . . , n} generalized force
Pim(t) time history of impact force
{qi(t), i� 1, 2, . . . , n} generalized co-ordinates of the bridge
r(x) surface irregularity function
Dt impact period
v(t) velocity of the convoy
xr local abscissa of the rth span
{xs(t), s� 1, 2, . . . , N} abscissa of the sth vehicle
w(x, t) de¯ection of the bridge at position x
{ys1(t), ys2(t), s� 1, 2, . . . , N} vertical displacements of the unsprung mass and

sprung mass, respectively, of the sth vehicle
o natural frequency of the bridge
fir(xr) the ith vibration mode of the rth span
{Fi(x), i� 1, 2, . . . , n} the ith vibration mode of the bridge
rA(x) mass per unit length of the bridge
D(o2) global dynamic stiffness matrix
M*, C*, K* generalized mass, damping and stiffness matrices

of the vehicle±bridge system
M2 , C, K vehicle unsprung mass, damping and stiffness

matrices
Mb , Kb mass and stiffness matrices of the bridge
p generalized force vector during impact
p* generalized force vector
q generalized co-ordinate vector for the bridge
r surface irregularity function vector
y2 vehicle sprung mass displacement vector
F vibration mode shape matrix
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